
Understanding the Loss Behavior of Position-Based

Greedy Routing in Vehicular Highway Scenarios

Studienarbeit
Von

Roland Krüger
(rkrueger@rumms.uni-mannheim.de)

aus
Dresden

vorgelegt am
Lehrstuhl für Praktische Informatik IV

Prof. Dr. W. Effelsberg
Fakultät für Mathematik und Informatik

Universität Mannheim

Oktober 2005

Betreuer: Dipl. Wirtsch.-Inf. Holger Füßler
Dipl. Wirtsch.-Inf. Thomas King



Contents

1 Introduction 1

2 Position-Based Routing 2
2.1 Mobile ad-hoc networks . . . . . . . . . . . . . . . . . . . . . 2
2.2 Routing strategies . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Beaconing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.1 Beacon packets . . . . . . . . . . . . . . . . . . . . . . 3
2.3.2 Implicit beaconing . . . . . . . . . . . . . . . . . . . . 3

2.4 Location services . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Greedy forwarding . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Recovery strategies . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6.1 Lost link callback . . . . . . . . . . . . . . . . . . . . . 6

3 Detailed problem description 7

4 Implementation 9
4.1 The ns-2 network simulator . . . . . . . . . . . . . . . . . . . 9
4.2 Scenario generation with the hwgui tool . . . . . . . . . . . . 9

4.2.1 Origin of the movement patterns . . . . . . . . . . . . 10
4.2.2 Creation of bidirectional movement scenarios for ns-2 10
4.2.3 Communication patterns . . . . . . . . . . . . . . . . . 11

4.3 Adjustments made to the network code . . . . . . . . . . . . 13
4.4 Evaluation scripts . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4.1 Drop distance histograms . . . . . . . . . . . . . . . . 13
4.4.2 Loss probability graph . . . . . . . . . . . . . . . . . . 14
4.4.3 Graph of estimated PDR . . . . . . . . . . . . . . . . 14

5 Simulations and results 16
5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 Packet duplicates . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Routing loops . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.3 Effects of the location service . . . . . . . . . . . . . . 18

5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.1 Enabling implicit beaconing and lost link callback . . 19
5.3.2 Disabling implicit beaconing . . . . . . . . . . . . . . 23
5.3.3 Disabling lost link callback . . . . . . . . . . . . . . . 25
5.3.4 Disabling both implicit beaconing and lost link callback 25

6 Conclusions and future work 29

i



1 Introduction

In the past years, the importance of wireless devices and radio communica-
tion technologies has increasingly grown. A broad availability of inexpensive
equipment for wireless communication has raised demand for the develop-
ment and study of suitable routing protocols that enable freely moving net-
work nodes to exchange data with each other via radio communication in a
loose network. Such nodes may be represented by cars equipped with radio
devices or people using cell phones or handheld devices.

One such routing protocol is referred to as Position-Based Routing
(PBR). In PBR, routing decisions are based on maximizing the progress
each single data packet can make at each hop towards its destination. This
approach is also termed greedy forwarding since forwarding nodes will pass
data packets to that particular neighboring node that is geographically near-
est to the destination.

Great effort has been put into enhancing this plain greedy forwarding
process with optimization schemes that improve the overall performance of
the protocol. These optimizations have a significant impact on the proto-
col’s behavior. The present work aims at investigating the Position-Based
Routing protocol together with its optimization schemes. Prior to that,
an introduction of the involved techniques and algorithms of the protocol
will be given. The analysis undertaken in this work is facilitated by way
of simulating with the ns-2 network simulator. The main question that is
intended to be answered here is about the influence that each single opti-
mization scheme exerts on the overall performance of the protocol. In order
to examine this question, the protocol is simulated with the optimizations
alternately switched on and off. Additionally, the statistical properties of
the greedy forwarding process will be analyzed and interpreted.

The remainder of the work is structured as follows. Section 2 will give
an explanatory introduction to the protocols and mechanisms that are em-
ployed for the research done for this work. It deals with position-based
routing, location services and the supporting algorithms involved in these
techniques. After having illustrated the details of the PBR protocol, a more
thorough problem description of the object of investigation is given in Sec-
tion 3. Section 4 deals with the creation and configuration of the simulation
scenarios as well as with the adaptions that were made to the network sim-
ulator’s code. In Section 5, the results from the simulations are presented.
For each seperate feature that influences the protocol’s behavior, the respec-
tive effects are described and pictured with corresponding graphs. Finally,
Section 6 provides a concluding overview of the work and recapitulates the
findings made so far.

1



2 Position-Based Routing

2.1 Mobile ad-hoc networks

A mobile ad-hoc network (MANET) is a network of freely moving au-
tonomous nodes which are able to communicate with each other through
wireless radio devices. Due to the arbitrary movement patterns of the net-
work’s participants, links between nodes usually are of transient nature, i.e.
they may break unexpectedly. Additional nodes may join the network or
can be removed from it at any time. Thus, a mobile ad-hoc network is
characterized by a constantly changing network topology.

Another characteristic of MANETs is the role of the individual nodes.
They can act both as hosts and as network routers. Indeed, the task of
routing network traffic is the most crucial part they are responsible for.
Unlike wired networks, there are no special routers that are solely dedicated
to routing network traffic.

Wireless networking equipment has recently become increasingly
cheaper. Today’s large dissemination of wireless devices, such as cell phones,
hand-helds and notebooks, allow for a widespread adoption of ad-hoc net-
works providing inexpensive communication applications without the need
for cost-intensive infrastructures.

There is an abundance of conceivable fields of application for MANETs.
One of them is the use in road traffic where it can be used for exchanging
information about road condition, traffic congestions or danger areas.

The focus of this work is on bidirectional traffic patterns as can be ob-
served on a typical German highway. Each individual car here represents a
member of the simulated MANET.

2.2 Routing strategies

In a typical mobile ad-hoc network, nodes are moving around at different
speeds and in different directions. In doing so, links to formerly neighboring
nodes may break while connections to new neighbors are established. In
such an environment, routing is very different from routing schemes usually
employed in static networks such as the Internet. The fluctuating properties
of a mobile ad-hoc network must be allowed for with dedicated routing
schemes.

Two categories of routing procedures in MANETs can be generally
distinguished: position-based routing and topology-based routing [5]. In
topology-based routing, information about existing links between nodes is
used for making routing decisions. This is done by first finding a valid
route to a destination node prior to sending the first data packet. Protocols
from this category are very vulnerable when used in highly dynamic envi-
ronments. The probability of a route to break becomes higher the longer an
established route and the higher the relative speed of the involved nodes is.

2



In contrast, position-based routing is an approach that merely uses
knowledge about the geographic positions of the participating nodes. It is
not necessary to first discover a valid route to the destination node. Rather,
a target node’s physical position must be inquired if it is not already known.
Such inquiries are facilitated with a location service (see Section 2.4). After
having found out the destination node’s position, a number of approaches
can be applied to deliver a data packet to this node.

The main advantages over topology-based routing are that position-
based routing is stateless and that it is more stable in an environment with a
higher topology change rate. Only information about the current neighbors
has to be kept by a router, instead of keeping track of entire routes. Fur-
thermore, in a network whose topology changes very rapidly, position-based
routing is a more promising strategy because logically maintained routes
tend to break more easily, as already noted earlier.

2.3 Beaconing

2.3.1 Beacon packets

Position-based routing protocols require information about other nodes’ ge-
ographical position which should be as precise as possible. Knowledge about
its own position can be obtained by a node quite easily through technologies
like the Global Positioning System (GPS). It is then necessary to share that
information with the rest of the network so that routing decisions can be
based on it.

Nodes learn about their neighbors, i.e. nodes located in their direct trans-
mission range, by means of beacons. A beacon is an empty data packet
containing the current geographic position of the beacon’s sender. It is pe-
riodically broadcast within a given time interval which is referred to as the
beacon interval. Upon receiving such a packet, a node adds an entry for
the respective sender to its internal neighbor table. This entry is only then
removed after a timer times out without being reset by overhearing a new
beacon by the same node. Hence, every node knows about each of its neigh-
bors with a temporal resolution determined by the beacon interval and the
time-out. It is easy to see that the larger the beacon interval is, the higher
becomes the bias between a neighbor’s actual position and its position as it
is recorded in the neighbor table entries of its peers.

2.3.2 Implicit beaconing

Implicit beaconing is an optimization scheme that helps keep the neighbor
information up-to-date. Besides of sending beacons to announce their posi-
tions, network nodes provide each forwarded data packet’s header with their
own positional information. To enable the evaluation of these so-called im-
plicit beacons by all neighbors, the network interfaces of all participating

3



nodes are operating in promiscuous mode. I.e., bypassing MAC address fil-
tering, each node overhears all packets that are on the transmission medium
even if this node is not the registered addressee. Thus, all packets other
than real beacons can be considered as piggybacked implicit beacons that
improve the up-to-dateness of the overhearing nodes’ neighbor table entries.

Aside from that, implicit beaconing is also a means to reduce network
traffic. For each piggybacked beacon that is transmitted by a node, this
node’s internal beacon timer can be reset. Thus, it is not necessary for a
node to send any real beacons as long as it forwards data packets at a higher
or equal rate than is determined by the beacon interval.

2.4 Location services

In order to being able to communicate with non-neighboring nodes, each
participant of a MANET registers his positional information with an in-
stalled location service. This service later takes care of disseminating this
information into the network as needed. There exist different approaches
that describe how this can be done. One of them can be termed as a some-
for-some approach [6]. Here, each participating node is routing agent and
location server at the same time, i.e. there are no dedicated servers for that
task. Position requests from other nodes are served by those location servers
that have actual knowledge about the targeted node. Each node can provide
its own position, for instance.

Other strategies include stand-alone servers that serve all location re-
quests (some-for-all) or hierarchies of regions that each are managed by
local location servers that are responsible for one particular level of hierar-
chy.

In the some-for-some approach, when a node needs to find out the po-
sition of another node, it poses a position request to the location service.
This results in the request being flooded through the network until it is re-
ceived by a location server that has knowledge about the inquired node. A
reply can then be easily sent back to the inquirer via the reverse route that
has been established by the request packet on its way through the network.
This is done through a unicast connection and by using the same routing
protocol that is also employed for delivering common data packets.

2.5 Greedy forwarding

After having acquired a destination node’s geographical position, data pack-
ets can be sent there. One possibility to do so is greedy forwarding. Using
this scheme, a packet is always forwarded to the node that is positioned ge-
ographically nearest to the destination node. Each data packet that is sent
carries the destination node’s physical position in its header. After having
received such a packet, a forwarding node has to make a new routing deci-

4



C

D

A

B

Figure 1: Greedy forwarding: Node A forwards to node C since C is nearer
to the destination D than node B. The dotted circles indicate A’s and C’s
radio ranges.

sion. First, it is checked by this node if there’s an entry for the destination
node in its local neighbor table. If so, the packet can be directly delivered
there. If on the other hand the destination node is not within one-hop reach,
it is tried to forward the packet to a suitable neighbor. The forwarding node
will scan through its neigbor table, pick out a node that ensures the most
progress towards the destination, and marks that node as the next hop. If
no next hop can be found or the packet cannot be successfully forwarded,
the packet is dropped.

2.6 Recovery strategies

The forwarding of a packet may fail due to different reasons. First, it is
conceivable that the forwarding node turns out to be located at a local
maximum, i.e. of all nodes within transmission range the forwarding node
itself is closest to the destination. In such a case, greedy forwarding fails
because it cannot find a route even if one exists. A mechanism to avoid
packet drops caused by reaching local maxima is to temporarily interrupt
greedy forwarding in such a case and find a detour around the maximum.
This mechanism, which is termed perimeter mode, is implemented in the
Greedy Perimeter Stateless Routing Protocol (GPSR) [3] which will here
not be discussed any further. The problem of reaching local maxima is of no
issue in the highway scenarios examined in this work. This is due to the fact
that data packets will be sent one-dimensionally either up or down the road.
If a packet can’t be forwarded anymore it is because the destination node is
located in another partition of the net and can’t be reached whatsoever.

5



N3

N2

p

N1

F

D1N ’

(a)

N3

N2

N1

F

D

LLC

(b)

N3

N2

p

N1

F

D

(c)

Figure 2: Lost link callback feature

2.6.1 Lost link callback

Packet forwarding can also fail on the MAC layer. This happens when a
next hop has been chosen that is no longer reachable. Mobile nodes only
learn about their direct neighbors upon receiving a beacon. In the mean-
time between two successive beacons, it can happen that two neighboring
nodes move outside of each other’s transmission range. This means that the
respective neighbor table entries have become stale, i.e. they are no longer
valid. They will only be purged from the neighbor table after a time-out. If
such an entry is selected as the next hop, the packet’s forwarding will fail
since the next hop is no longer reachable. A recovery strategy to circum-
vent this problem is named by the term lost link callback. Here, the MAC
layer invokes a dedicated callback funktion in the routing layer after having
unsuccessfully attempted to send a packet. This callback function now re-
moves the stale entry from the neighbor table and chooses another suitable
next hop from the purged table. If necessary, this procedure is repeated
until no further next hop candidate can be found or the maximum number
of callbacks has been made. Only then the packet to be sent is considered
undeliverable and will be dropped.

For an example of this feature, consider Figure 2. In Figure 2(a), node F
intends to forward a packet p, which is heading towards its destination D, to
node N1. According to F ’s neighbor table, N1 is expected to be located at
position N ′

1 and is thus nearest to D from its point of view. N1 is therefore
chosen as the next hop. In reality, however, node N1 in the meantime has
moved towards a position that is outside of F ’s radio range. Hence, packet p
cannot be successfully delivered. This is noticed by F ’s MAC layer, since it
doesn’t receive any acknowledgement. F ’s MAC layer then invokes the lost
link callback function in the routing layer to notify it of the failed packet
forwarding attempt (hinted in Figure 2(b)). Node F can now choose another
next hop to try to send p there, as depicted in Figure 2(c).

6



3 Detailed problem description

An analytical inspection of the PBR protocol suggests that the protocol’s
performance does exclusively depend on the process of forwarding packets
between two intermediate nodes. This can be verified by looking at the ele-
mental routing decisions which are performed by every forwarding node. As
a packet travels through the network, at each hop a new routing decision
based solely on the information the routing node currently holds is made.
Since the entire procedure of greedy forwarding is only dependent on the
nodes directly involved in the individual forwarding processes, one can state
that the only parameter that determines whether a packet will successfully
be delivered is the loss probability pi, with 0 ≤ pi ≤ 1. Such a pi specifies
the probability that a packet is dropped at the ith hop for any reason what-
soever. Since the success of a single-hop transmission is independent from
all previous transmissions, a single loss probability p can be assumed to be
valid for every forwarding process.

A completely analytical approach now yields the following probability
function S(n) for a packet to be successfully delivered from source to desti-
nation, provided that each forwarding process can be seen as an independent
random experiment:

S(n) = (1− p)n (1)

Here n denotes the number of hops that a packet has to take on the way
to its destination. At the same time S(n) can be interpreted as an estimate
for the packet delivery ratio (PDR). This value refers to the ratio between
sent and received data packets.

If the loss probability n is larger than zero, one can expect a convex PDR
graph as exemplarily depicted in Figure 3(a) in an idealized way. Simulations
of the greedy forwarding protocol, however, have produced rather dissatis-
factory results in that the described effect couldn’t be properly discerned.
Figure 3(b) shows the PDR graph for a simulation of the PBR protocol with
three different beacon intervals and a location service installed.

There are some factors that can be considered relevant for this behav-
ior. Since Equation (1) relates to the pure greedy forwarding scheme, the
additional optimizations implicit beaconing and lost link callback could be
responsible for the graph’s presentation.

Another conceivable influential factor can be seen in the installed loca-
tion service. The most critical influence that the usage of a realistic location
service has can be found in the delay that stems from the time-consuming
process of requesting information about other nodes’ positions.

In this work, a description of the effects the protocol’s optimization
schemes have is provided. This is done by isolating the different factors from
each other and deriving the influence the single items exert on the proto-
col’s behavior from appropriate simulations. For this, the two optimization

7



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

(a)

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-REAL-802_11-ib1-llc1
PBR-1.0-PLAIN-REAL-802_11-ib1-llc1

PBR-2.0-PLAIN-REAL-802_11-ib1-llc1

(b)

Figure 3: Estimated and obtained PDR curve progression

schemes are made seperately able to be switched on and off. Furthermore,
the location service will be replaced by simulator knowledge, i.e. every node
will learn about the positions of other nodes right away and with no delay.

8



4 Implementation

4.1 The ns-2 network simulator

The simulations for solving the problem at hand are performed using the
ns-2 network simulator [7]. Ns-2 is supported by DARPA through the VINT
(Virtual InterNetwork Testbed) project. Additional contributors such as the
CMU Monarch projects or Sun Microsystems are providing substantial parts
to the code.

The ns-2 network simulator is a deterministic and discrete event sim-
ulator. It is entirely composed of C++ and OTcl classes and provides an
extensible interface needed by implementers to add their own code. A full-
fledged scripting engine allows an easy setup and execution of arbitrary
simulation scenarios. For this, an OTcl interpreter serves as a frontend for
installing and controlling simulation scripts.

The output of a simulation run is an ASCII trace file with one-line records
for every interesting incident that may happen during a simulation. Such
incidents can be events like node movements, packet sending, receiving, and
forwarding, packet drops and other miscellaneous information. Such a trace
file can later be analyzed and summarized by specific scripts and visualized
in proper graphs.

A simulation setup generally consists of two parts: a movement pattern
and several accompanying communication patterns. Both pattern types are
given in the form of OTcl scripts that tell the simulator what to do. As the
name suggests, movement patterns contain all information about the node
movements. Here, the nodes are placed on their initial position and are later
moved along a virtual road. As the nodes leave or enter the simulation area
they are switched on and off accordingly.

Communication patterns, on the other hand, set up all the necessary
data that is needed for two nodes to get in contact with each other. Here,
the communication facilities of every pair that has been chosen from the
movement data set are initialized. This includes the setup of routing and
ping agents as well as the definition of the data link’s parameters.

Normally, for one scenario there’s one movement pattern together with
several communication patterns. The latter usually differ only in the aver-
age distance that is between any two communication partners and in the
individual nodes that are meant to get in touch with each other.

In Section 4.2.3, a description of the patterns that were used for this
work can be found.

4.2 Scenario generation with the hwgui tool

The hwgui tool was initially developed as a visualization tool for highway
scenarios [8]. The tool is written in Java using the Swing GUI library. A
command line mode was later added for scenario data file handling purposes.

9



In GUI mode, the user can open and display a uni- or bidirectional movement
pattern. In addition to a graphical representation of the network nodes on
a virtual highway, several general and time-dependent statistical values are
shown.

If used in command line mode, one can process scenario files that have to
be in the original DaimlerChrysler format (see Section 4.2.1 for an explana-
tion). The two main functions of that mode are the generation of movement
and communication patterns readable by ns-2 and the calculation of a set
of statistics from movement patterns [4].

4.2.1 Origin of the movement patterns

To obtain real world comparable results, the simulation of common highway
traffic is needed which is required to as much as possible come close to traf-
fic patterns that are observable on ordinary highways. For this reason the
output of DaimlerChrysler’s driver behavior simulation tool FARSI is taken
as the basis from which all needed movement patterns are derived. FARSI
is a simulator that generates traffic patterns as observable on a typical Ger-
man highway. To accomplish the goal of approximating reality as precisely
as possible, FARSI takes into account a large number of fine-grained vari-
ables and parameters. These include driver behavioral models and technical
aspects of the simulated vehicles. The resulting movement patterns then
reflect realistic lane usages, speeds, distances and driver behavior [2].

The simulator’s concrete output describes a short period in time (usually
several minutes) of vehicular movement in only one direction. Such output
comes in the form of a tabular text file where each column represents the
trajectory of one vehicle. Starting from there, it is now necessary to convert
such a FARSI-specific scenario text file into a format that is processable for
ns-2. This is accomplished with the hwgui tool.

4.2.2 Creation of bidirectional movement scenarios for ns-2

Prior to converting a scenario into a Tcl script which can be ultimately
understood by ns-2, some preparations have first to be done with the original
DaimlerChrysler scenario files (abbreviated to ‘DCX-files’ in the following).

As stated above, the original DCX-files only provide unidirectional traffic
patterns. To obtain the required bidirectional scenarios, the onward traffic
has to be explicitly added by way of combining two unidirectional scenarios.
This is accomplished by inverting one scenario and adding it to another one
as the opposite direction. Before that is done, each original unidirectional
scenario file is divided into ten cuts of equal duration such that each of those
cuts contains a slice with a total duration of sixty seconds. In another step,
two of these cuts are combined into one bidirectional scenario file. In order
to avoid singularities stemming from the same pattern pasted onto itself,

10



Figure 4: Screenshot of a bidirectional highway scenario with two lanes per
direction displayed in hwgui. Black dots indicate node positions.

Figure 5: Screenshot of several communication pairs in the hwgui tool

the procedure of combining the cuts is done in such a way that the first cut
is combined with the last, the second cut is combined with the last but one,
and so on.

A set of five bidirectional movement patterns is thereby gained from one
original DCX-file. These are used in a next step as a basis for generating
communication patterns, i.e. nodes that will start a communication process
with each other in the simulations are chosen randomly. Figure 4 depicts an
examplary screenshot of hwgui’s highway section.

4.2.3 Communication patterns

For the simulations, a number of movement and communication patterns
has been created with the hwgui tool. The movement patterns differ in two
parameters: the node density per lane and kilometer and the number of lanes
per direction. The resulting patterns emulate typical bidirectional traffic
patterns on a common German highway. For each one of these patterns,
random communication partners are chosen in a specific manner referred to
as single source scheme.

11



In a communication pattern, a number of equally distributed node pairs
are randomly selected and set up. The communication triggered between
two nodes during a simulation run will be a stream of ping packets. Other
than usual for a ping stream, the receiving nodes are set up in such a way,
that a received ping packet will not be answered with an echo. This is
done in order to avoid any effects caused by the optimization schemes of the
routing protocol to emerge.

A set of communication patterns has been generated with the single
source scheme. The different patterns vary in an increasing communication
distance, i.e. the average distance between any two partnering nodes dur-
ing the communication process. This distance starts with 1000 meters and
goes up to seven kilometers in steps of 500 meters. With a transmission
radius of 500 meters it is thus guaranteed that a packet is forwarded at
least once by an intermediate node. The procedure for finding and setting
up communication partners is as follows. First the source nodes for every
communication stream are selected. This set of nodes stays fixed for each
communication distance. Then the destination nodes are chosen in such a
way that two preconditions hold. First, while sending packets, it is guar-
anteed that the sender and receiver will have a distance between them that
falls in the interval [∆C − 500m,∆C ] with ∆C denoting the communication
distance. Second, all destination nodes have to be located either ahead of or
behind their respective source node during the whole communication time.
In order to obtain comparable results, it is important that each packet, that
is sent from the same source node, will be routed preferably via the same
intermediate nodes. This is assured by the scheme described above and by
having a single source node start its communication process at the same
time for each communication distance. Local discontinuities will then occur
systematically rather than randomly so that they have a comparable effect
over the simulations of the different communication distances.

As an example, Figure 5 shows a screenshot from the hwgui tool, that
depicts a single source node and its respective partners from a set of com-
munication patterns. The node with number ’39’ here serves as source node
with the other nodes being the individual destinations.

It should be remarked that the different communication patterns are
not simulated at the same time as the screenshot would suggest. Rather,
each pattern is simulated individually, so that they don’t interfere with each
other. Nevertheless, when simulating the seperate communication patterns,
a single source node will always start its sending process at the same time
instance. This is hinted in the screenshot by the colored lines, that stand
for an ongoing communication link.

As a side note it should be stated that every communication pair is
chosen in such a manner that both sender and receiver are located in the
same partition of the network. Thus, it is assured that a packet drop can be
attributed to a shortcoming of the routing protocol and not to a non-existing

12



path to the destination node.

4.3 Adjustments made to the network code

In order to separate the effects of the two optimization techniques implicit
beaconing and lost link callback from each other, a switch has been added to
the code of the PBR implementation to enable and disable the two features
individually. The features can thus be managed through the OTcl interface
and switched on or off in the OTcl control scripts as needed.

When having deactivated the implicit beaconing feature, the update of
the neighbor table is bypassed upon receipt of a normal, non-beacon packet.
So only real beacons will be evaluated.

When switching off the lost link callback feature, the selection of another
suitable next hop is avoided in the callback function. So if the MAC layer
detects the failure of delivering a packet, the data packet is dropped at once.

4.4 Evaluation scripts

One objective of this work is to give an empirical estimation of the per-
hop packet loss probability p. Therefore the existing script for evaluating
simulation runs was enhanced with code that will support this task.

In the evaluation step, a number of diagrams is output that depict several
interesting aspects of a simulation. Such are, for instance, packet delivery
ratio graphs, graphs with the number of packet collisions, or ping delay
graphs. There have now been added three new diagrams that are explained
in the following.

4.4.1 Drop distance histograms

The first new type of diagram shows a histogram of the drop counts with
respect to the distance between the sender and the place where the drops
occurred. This histogram comes with two different distance metrics. In
the first type, the horizontal axis is divided into bins with a width of fifty
meters. A dropped packet falls into that specific bin which contains the
distance between the packet’s source node and the node where the drop
took place.

In addition to that, another kind of metric is used. That type of drop
distance histogram uses a hop metric. Here, the drop count with respect to
the number of hops the lost packets have travelled so far is shown.

For the creation of these histograms, only the simulations with the largest
communication distance, i.e. 7000 meters for this work, are considered. Ad-
ditional information is put into the histograms by displaying the average as
a vertical bar and the standard deviation of the data.

Drop distance histograms are helpful for interpreting the obtained sim-
ulation data. If the individual forwarding processes are indeed independent

13



from each other with one globally valid loss probability, it can be expected
that all drops are occurring equally distributed over the entire communica-
tion range beginning at the sender and extending to the destination node.
This means for the drop distance histogram that is subdivided into fifty
meters bins that each bin is approximately filled with the same amount of
drops.

4.4.2 Loss probability graph

This graph shows the average probability p that a packet drop occurs be-
tween any two nodes.

As already mentioned in Section 3, the characteristics of the position-
based routing scheme suggest that the probability of a packet loss between
two nodes is independent of the overall route length between sender and
receiver. To confirm this, the observed packet loss probability is calculated
and displayed in a graph as follows.

The process of forwarding a packet between two nodes can be interpreted
as a random experiment, or more specifically, a Bernoulli trial. The forward-
ing of a packet either succeeds or fails. The entire operation of sending a
packet from a source to a destination can thus be seen as a Bernoulli process
where each forwarding event is a Bernoulli trial. In order to compute p, the
total number of forwarding attempts together with the number of failures,
i.e. packet drops, has to be counted. p can then be calculated as

p =
∑

packet losses∑
single hop transmissions

(2)

Here, the number of packet losses corresponds to the total drop count of a
simulation. A single hop transmission is defined as an attempt to forward a
packet to another node, regardless if it was successful or not.

The overall drop count is calculated as the number of sent packets minus
the number of successfully received packets. Here, duplicate packets that
have emerged and later been dropped during a simulation should actually
be added, too. Since it turned out to be infeasible to identify them, they
are ignored in this calculation. So, if there are any losses of this type, they
distort the calculation of p a bit. But it has turned out that they have only
marginal weight, if any. Duplicate packets are discussed in more detail in
Section 5.2.1.

The loss probability graphs now show the development of p over the
increasing communication distance.

4.4.3 Graph of estimated PDR

Based on p, estimated PDR graphs show the outline of the PDR provided
that the assumption of the independence of the forwarding processes applies.

14



These graphs are generated by taking the packet loss probability as empiri-
cally determined with Equation (2) and using it together with Equation (1)
to obtain the fraction of the number of sent packets that is estimated to be
successfully delivered.

As stated before in Section 4.4.2, routing a packet from a sending node
to a destination node is a Bernoulli process if the assumption made above
holds true. For such a process, the probability that an event A will take
place exactly m times if an independent random process is repeated n times
is given by

P (An) =
(

n

m

)
θm(1− θ)n−m (3)

Here, θ is defined as the probability that the event A will occur if the random
experiment is conducted only once [1].

If applied to the routing process of a data packet, θ can be interpreted
as p, and event A can be defined as the occurrence of a packet drop. The
problem of determining the probability that a packet is successfully delivered
from end to end can thus be restated as follows: What is the probability
that event A (a packet drop) does never occur when forwarding a packet n
times, i.e. when transporting it via a route of n hops?

Applied with Equation (3), the problem yields

P =
(

n

0

)
p0(1− p)n (4)

which resolves to Equation (1).
For the generation of the graph the problem how to determine n arose.

This was solved by taking the empirically observed average route length of
each successfully delivered packet as an estimate for n.

In addition to the estimated PDR graph, another curve is drawn into
these diagrams for comparison. In contrast to the graph described above,
this curve shows an idealized PDR graph. While for the estimated PDR
curves the fluctuating ps are taken for the calculation of each sampling
point as they can be read off of the loss probability graph, the idealized
PDR graphs are calculated with only one fixed loss probability. This one
is determined by averaging all observed ps starting with a communication
distance of 2500 meters. The lower communication distances are omitted as
there are made only too few executions of the random experiment, i.e. there
are too little single hop transmissions to yield a significant loss probability.

Since Equation (1) is calculated on a per-hop basis, a conversion had
to be applied in order to adapt the route length n to the x-axis scaled in
meters. To achieve this, it is calculated how much meters are covered by
one hop on average. This mean hop distance is then used to compute the
correct position on the x-axis according to the average route length for the
different communication distances.

15



5 Simulations and results

In order to investigate the question at hand as described in Section 3, the
influences of the different factors that affect the protocol’s behavior are
separately isolated and examined by means of running simulations with the
ns-2 network simulator.

As already stated previously, three sources were identified that can be
taken into account as a potential bias for the protocol’s behavior: the in-
stalled location service, implicit beaconing and the lost link callback feature.
Therefore, a simulation setup has been arranged with the latter two features
alternately switched on and off and the location service replaced by simula-
tor knowledge.

5.1 Simulation setup

A set of different movement scenarios has then been used for the simulations.
All of these have a total duration of sixty seconds. The number of lanes per
direction is two and three lanes, respectively. The node density per direction
is a combination from a set of 2, 6, and 11 nodes per kilometer.

The communication patterns have been set up with varying parameters.
In each scenario there are several pairs of communicating nodes that will
start their sending process one after the other, so that no two pairs are
communicating concurrently. The average distance between them during
the sending process ranges from 1000 meters through 7000 meters with a
stepsize of 500 meters, each step size forming a separate communication
pattern that is simulated individually.

Two types of data traffic has been separately set up. The first type is
constituted by single-packet data streams, i.e. between each communication
pair only one ping packet is exchanged. To obtain a large sampling of
forwarding processes, an amount of fifty communication pairs per scenario
has been chosen for this type. For the second type, every data stream
consists of thirty ping packets emitted with a sending rate of eight packets
per second by a total number of ten communication pairs.

All setups were simulated with a beacon interval of 0.5, 1.0, and 2.0
seconds, respectively.

Every simulation setup is repeated ten times with the global random
seed changed each time. This is done for obtaining relatively stable results
with respect to the statistical distribution.

Furthermore, another minor setting was done for the simulations, namely
adjusting the MAC retry count to one. This will have the MAC layer at-
tempt the transmission of a packet only once. If that transmission fails the
first time, the MAC layer will do no further effort but immediately informs
the routing layer of the failure through a lost link callback.

16



A A’

B’B

Direction of destination D

Figure 6: Emergence of routing loops

5.2 Observations

First of all, some general observations have been made throughout the sim-
ulations. These are outlined in the next sections.

5.2.1 Packet duplicates

A first observation in the simulation data can be done of packet duplicates.
The emergence of duplicates can occur in all cases when the lost link call-
back feature is active. Duplicates can easily be identified by the destination
nodes and will be silently dropped by them. A packet is duplicated when
the following exemplary situation takes place. Node A intends to forward a
packet to node B. This will cause the MAC-layer to transmit that packet
over the channel to the next hop and to hereafter wait for an acknowledge-
ment of reception. Node B then correctly receives the packet and sends the
mandatory ACK-packet back to A. If this ACK-packet is now lost during
transmission so that A doesn’t receive it in time, A’s routing layer lost link
callback is invoked. This will have A retransmit the data packet. Such will
happen each time an ACK-packet is lost and a subsequent lost link call-
back is issued. These unintentionally created packets will add to overall
network traffic and must be kept in mind when making statements about
the networks characteristics.

This occurrence will only happen if the lost link callback is enabled.
Otherwise, if no ACK was received, the routing layer will drop the data
packet under all circumstances without trying to retransmit it.

5.2.2 Routing loops

Routing loops are a phenomenon that can take place under certain condi-
tions when the implicit beaconing feature is turned off. A loop can occur as
exemplified in Figure 6.

17



If implicit beaconing is deactivated, information about neighbor posi-
tions can only be disseminated by explicit beacon packets. In Figure 6 node
A wants to forward a packet to node B, as the destination is located in the
east. Both nodes drive to the left during which A is overtaking B. The
actual node positions are marked with A and B, respectively. However, the
view on the network by the nodes according to their neighbor tables is a
different one. The last time that A and B have received a beacon from each
other they were both placed at the positions marked by A′ and B′. Only
these positions are relevant for them for making routing decisions. If now
node A has to route a packet to destination D it will forward it to B, since
it is aware of its own position and knows that B′ is nearer to D. B in turn
will directly send the packet back to A, because this node thinks that A is
at position A′ and thus nearer to D. Hence, a routing loop has emerged,
and the packet is sent back and forth between A and B until the time to live
counter drops to zero causing the packet to be discarded. Of course, situa-
tions other than the one depicted in Figure 6 are imaginable where routing
loops can occur with implicit beaconing disabled.

In contrast, if implicit beaconing was enabled, the forwarded packet
would have piggybacked the actual position of node A so that B could first
have updated its neighbor table. The packet then wouldn’t have been sent
back, since B would have known that it is nearer to the destination node
than A.

The occurrence of routing loops can be visualized with the drop distance
histograms. In Figure 7 it can be seen that the majority of the data packets
is dropped after 64 hops. Since the time to live (TTL) counter for each
packet is initially set to 64, this indicates that these packets are discarded
because the TTL counter has dropped to zero, which can only happen in
case of a routing loop.

5.2.3 Effects of the location service

As already mentioned in Section 3, the deployed location service adds a
significant delay to the delivery times of all data packets. This effect is
induced by the rather time-consuming process of requesting the positional
information of other nodes as described in Section 2.4. After this information
has been obtained, the routing process of the data packets towards the
destination can begin. It has to be borne in mind that the destination
node keeps changing its position after having answered a location request.
Thus, the discrepancy between the destination node’s current position and
the position that is carried to the requesting node in the location request’s
reply grows larger over time. If the delay of the data packets becomes too
large, however, it may happen that the destination node has moved too far
away from the position it occupied while answering the location request. The
last-hop forwarding node in charge of finally delivering the data packets then

18



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60  70

Dr
op

 c
ou

nt

Distance [hops]

15.0 sec. beacon interval
Average: 39.93 hops

std. deviation: 44.18 hops

Figure 7: Drop distance histogram for a beacon interval of 15.0 seconds

doesn’t find the destination node in its transmission range and is compelled
to drop these packets. Requesting the destination node’s position anew
in such a case is not intended by the protocol. Therefore, the larger the
delay and the higher the average node velocity is the larger becomes the
probability of this sort of packet drops.

Another effect of the location service can be observed together with the
implicit beaconing feature. Since a location request is accompanied by a
lot of data traffic, such as flooding the request and its answering, many
nodes are able to overhear that traffic and can thus update their neighbor
tables with the most current positional information of the involved nodes.
Location requests therefore facilitate the subsequent routing process. This is
all the more significant the greater the distance between the requesting and
the destination node is, and thus the larger the area affected by a location
request becomes.

5.3 Simulation results

For the illustration of the simulation results, the simulation’s output of a
scenario with two lanes per direction and a node density of six nodes per
lane in either direction is used here as a representative.

5.3.1 Enabling implicit beaconing and lost link callback

When simulating with implicit beaconing (henceforth abbreviated to IB)
and lost link callback (LLC) enabled and with the location service replaced
by simulator knowledge, it is noticeable that with the beacon intervals set
to 0.5, 1.0, and 2.0 almost all packets reach their destination, so that the
PDR is very close to or exactly 100% all the time. In Figure 8 the PDR

19



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc1

Figure 8: PDR with IB and LLC enabled

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Lo
ss

 P
ro

ba
bi

lity
 p

er
 H

op
 [%

]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc1

Figure 9: Loss probability graph with IB and LLC enabled

graph for this situation is shown. In order to discern any interesting effects,
a larger beacon interval of 15.0 seconds therefore has also been simulated
for comparison. Of course, such a large beacon interval imposes a number of
problems on the interpretation of the simulation’s data, since it is not very
realistic. For now, these problems shall be put aside as some interesting
effects can still be observed with such a large beacon interval.

As can be expected, the loss probability for this case is close to or equal
zero. Figure 9 shows exactly this.

Taking this empirically determined loss probability and calculating the
estimated PDR graph results in the graph depicted in Figure 11(a). In this
sort of graphs, the red line represents the idealized PDR. Here, it can be
clearly seen that for a beacon interval of 15.0 seconds a single constant loss

20



 0

 50

 100

 150

 200

 250

 300

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

M
ot

io
n 

Pr
ed

ict
io

n 
Er

ro
r [

m
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc1

Figure 10: Motion prediction error

probability cannot be assumed for every communication distance. Rather,
as shown in Figure 9, the packet loss probability is decreasing with an in-
creasing communication distance. Therefore, the estimated PDR curve is
almost horizontal while the idealized PDR curve as decribed in Section 4.4.3
is sloping downwards.

A hint why this could be the case gives the motion prediction error as
shown in Figure 10. The motion prediction error is defined as the aver-
age distance between the actual positions of the next hop nodes and their
presumed positions as recorded in the forwarding nodes’ neighbor tables.
For example, the distance between the positions marked by N ′

1 and N1 in
Figure 2(a) is included in the motion prediction error. For the case with a
15.0 seconds beacon interval this type of error constantly decreases with the
increasing communication distance (see Figure 10). This means, in effect,
that the routing decisions become better over time.

This effect can be attributed to the IB feature. With IB turned on, a
piggybacked beacon that accompanies a data packet through the network
will update the neighbor tables of all nodes that overhear it along the way.
Thus, the routing process for a packet that afterwards travels along a route
of thus updated nodes benefits from the preceding implicit beacon.

The larger the beacon interval is, the more important are implicit bea-
cons, since they are the only means of updating the neighbor tables for the
long time span between two ordinary beacons. In the situation depicted in
Figure 10, this effect becomes the more striking, the larger the communica-
tion distance is. This is due to the fact that with a larger communication dis-
tance, the area that is affected by the piggybacked beacons becomes larger,
too. So, the chance of routing over nodes with more up-to-date information
also grows larger.

The mean route length that is taken for n in Equation (1) is depicted

21



 0

 20

 40

 60

 80

 100

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500

Es
tim

at
ed

 P
DR

 [%
]

Communication Distance [m]

(a) Estimated and idealized PDR

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500

Ro
ut

e 
Le

ng
th

 [h
op

]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc1

(b) Average route length

Figure 11: Both features turned on

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc1

(a) 6 nodes per km and lane

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc1

(b) 2 and 6 nodes per km and lane

Figure 12: PDR curves with IB disabled

in Figure 11(b). This type of graph shows the average number of hops that
every sucessfully delivered packet has taken on its way. Here, it is noteworthy
that the larger the beacon interval becomes, the longer the average route
lengths get. This is due to the fact that with an increasing beacon interval
the information in the network nodes become more and more apt to be stale
and unreliable. Routing decisions thus get increasingly unprecise. A node
may even be inadvertently routed backwards. Such a negative progress can
happen when a next hop node’s position in reality is behind the forwarding
node, whereas its entry in the forwarding node’s neighbor table says that it
is ahead of it. This is what takes place in a routing loop (see Section 5.2.2),
for example.

22



 0

 20

 40

 60

 80

 100

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500

Es
tim

at
ed

 P
DR

 [%
]

Communication Distance [m]

(a)

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Lo
ss

 P
ro

ba
bi

lity
 p

er
 H

op
 [%

]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc1
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc1

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc1
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc1

(b)

Figure 13: Estimated PDR and loss probability with IB disabled

5.3.2 Disabling implicit beaconing

The next step in isolating the PBR optimization features is to only switch
off IB. The PDR graph for the simulations with IB disabled shows Fig-
ure 12(a). Here, it is not possible to descry any significant effect that the
missing IB has, as the delivery rate is continuously at 100% for the 0.5,
1.0, and 2.0 seconds beacon intervals. For comparison, another PDR graph
is shown in Figure 12(b) from a scenario with a lower node density which
is in either direction 2 and 6 nodes per kilometer, respectively. There the
PDR slightly deteriorates. This is explicable by the fact that with a higher
node density, a node’s neighbor table is filled with more entries than with a
sparse density. Thus, the routing algorithm has a higher chance of finding
a reachable neighbor with its trial and error scheme.

In the case at hand, a shortcoming of the method of estimating the loss
probability as described in Section 4.4.2 becomes apparent. In Figure 13(b)
it can be clearly seen that the estimation for the loss probability for a beacon
interval of 15.0 seconds is far too small. This faulty estimation results in the
estimated PDR graph shown in Figure 13(a), which is too optimistic since
the observed PDR curve (see Figure 12(a)) runs much lower. An inspection
of the drop distance histogram offers an explanation for that. Figure 7
shows the drop distances in hop metrics for that case. The great amount of
routing loops, identifiable by the 64-hop drops, account for a large number
of registered single-hop transmissions which are then responsible for the
distortion in the calculation of the loss probability. Single-hop transmissions
appearing in a routing loop shouldn’t be counted in Equation (2), since these
do not relate to the random experiment of forwarding data packets.

23



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc0

(a) Observed PDR graph

 0

 20

 40

 60

 80

 100

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500
Es

tim
at

ed
 P

DR
 [%

]
Communication Distance [m]

(b) Estimated PDR

Figure 14: Lost link callback switched off

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Lo
ss

 P
ro

ba
bi

lity
 p

er
 H

op
 [%

]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc0

Figure 15: Loss probability with only LLC switched off

24



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc0

(a) Observed PDR graph

 0

 20

 40

 60

 80

 100

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500

Es
tim

at
ed

 P
DR

 [%
]

Communication Distance [m]

(b) Estimated PDR

Figure 16: Both features switched off

5.3.3 Disabling lost link callback

The by far largest effect on the behavior of position-based routing is exerted
by the LLC feature. With LLC switched off, the PDR curve attains the ex-
pected convex curvature as described in Section 3. Figure 14(a) depicts this.
Also, the loss probability remains comparatively constant regardless of how
large the communication distance becomes (see Figure 15). This fact sup-
ports the assumption that the greedy forwarding processes are independent
from each other and are governed by a single, globally valid loss probability.
If Formula (1) is applied to these probabilities, an estimated PDR graph is
obtained as in Figure 14(b). Since the loss probability’s variance is small
for all communication distances, the idealized PDR curves nestle closely to
the estimated curves.

Comparison of Figure 14(a) and Figure 14(b) implies that the loss prob-
ability as empirically determined with Formula (2) is here a good estimate
for p.

In Figure 14(a) it can be observed that the beacon interval directly
correlates with the packet delivery ratio. This is due to the better and more
timely information the nodes have about their neighbors when the position
updates are spread more frequently.

5.3.4 Disabling both implicit beaconing and lost link callback

If in addition to LLC the IB feature is turned off, too, no significant vari-
ation can be made out in the graphs. In Figure 16(a), Figure 16(b), and
Figure 17 it can be seen that the curves are almost identical to those of the
previous paragraph. This can be explained by the fact that in this simula-
tion setup only one ping packet is exchanged between sender and receiver.
Implicit beaconing can only have a tangible effect if more than a few pack-
ets travel through the network. The first packet will disseminate the most

25



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Lo
ss

 P
ro

ba
bi

lity
 p

er
 H

op
 [%

]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc0

Figure 17: Loss probability with both features switched off

current positions of the forwarding nodes among all neighboring nodes on
its way through the network. For example, an echo reply packet could take
advantage of this positional information update, since the routing decisions
made for it can be based on very recent information. IB thus has a positive
effect on the PDR because it virtually increases the beacon interval of the
forwarding nodes to the packet sending rate in the area that is traversed
by data packets. In addition, it favors succeeding packets that are routed
through the same area, regardless whether these originate from the same
source.

A more palpable impression of the effects IB has can be observed when
looking at the graphs of simulations in which each communication pair ex-
changes an amount of thirty ping packets that are answered with echo pack-
ets. Then the information updates caused by travelling data packets in-
creasingly facilitate the overall routing process the larger the area becomes
that is affected by IB. See Figure 18(a) and Figure 18(b) for the PDR of the
case with 30 ping packets. These show that the routing results are slightly
better with IB switched on.

Figure 19 shows the drop distance histogram for a beacon interval of 0.5
seconds. There it can be seen that the drops are distributed approximately
equally over the whole range of 7000 meters. This meets the expectations
as stated in Section 4.4.1.

Once again, however, the loss probability’s estimation for a beacon inter-
val of 15.0 seconds is too small. Inspection of the drop distance histogram
once more reveals the occurrence of routing loops (see Figure 20(a)).

Figure 20(b) indicates another problem of the loss probability’s calcula-
tion. With a large beacon interval such as 15.0 seconds and both protocol
optimizations switched off, it becomes very hard to transport any data pack-
ets to the destination at all. As can be seen in Figure 20(b), most of the

26



 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib1-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib1-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib1-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib1-llc0

(a) with IB enabled

 0

 20

 40

 60

 80

 100

 1000  1500  2000  2500  3000  3500  4000  4500  5000  5500  6000  6500  7000

Pa
ck

et
 D

el
ive

ry
 R

at
e 

[%
]

Communication Distance [m]

PBR-0.5-PLAIN-OMNI-802_11-ib0-llc0
PBR-1.0-PLAIN-OMNI-802_11-ib0-llc0

PBR-15.0-PLAIN-OMNI-802_11-ib0-llc0
PBR-2.0-PLAIN-OMNI-802_11-ib0-llc0

(b) with IB disabled

Figure 18: PDR graphs for data traffic consisting of 30 ping/echo pairs and
LLC disabled

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1000  2000  3000  4000  5000  6000  7000

Dr
op

 c
ou

nt

Distance [m]

0.5 sec. beacon interval
Average: 3017.72 m

std. deviation: 1854.53 m

Figure 19: Drop distance histogram for a beacon interval of 0.5 seconds

27



 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70

Dr
op

 c
ou

nt

Distance [hops]

15.0 sec. beacon interval
Average: 5.40 hops

std. deviation: 13.70 hops

(a) Drops per hop

 0

 2

 4

 6

 8

 10

 12

 14

 0  1000  2000  3000  4000  5000  6000  7000

Dr
op

 c
ou

nt

Distance [m]

15.0 sec. beacon interval
Average: 1358.51 m

std. deviation: 1392.48 m

(b) Drops per 50 meters

Figure 20: Drop distance histograms for a beacon interval of 15.0 seconds
and both optimizations switched off

packets are lost very early. With that, the number of executed Bernoulli
trials decreases, since packets that are lost early cannot later on contribute
to the random experiment anymore. This leads to a decreased random sam-
pling which distorts the overall results. Simulations as they are conducted
for this work therefore prove to be inappropriate to fully examine the prob-
lem at hand. A solution to this problem is suggested in the next section.

28



6 Conclusions and future work

In this work an examination of the loss behavior of the Position-Based Rout-
ing protocol was presented. By separately isolating the individual optimiza-
tion techniques implicit beaconing and lost link callback, the effects of these
optimizations on the protocol’s behavior were exposed and described. It
was shown that the by far greatest impact on the protocol’s performance
is evoked by the lost link callback feature. Switching it off results in a dis-
tinct drop of the packet delivery rate. In addition, it was demonstrated
that as expected a globally valid single loss probability which affects the
overall probability of a successful packet delivery can be assumed when the
protocol is stripped off of its optimization features. Evidence was provided
for the presumption that the basic greedy forwarding routing process is in
fact a Bernoulli process. Furthermore, some observations could be made
when disabling the implicit beaconing feature. First of all, without implicit
beaconing it becomes possible for data packets to get entrapped in routing
loops. Secondly, implicit beacons basically adjust the beacon interval to the
packet sending rate in the area that is traversed by them. Thus, subsequent
forwarding processes can take advantage of the more up-to-date neighbor
tables, so that there is a higher chance for them to successfully transmit
data packets.

The beacon interval that is chosen for running a simulation has been
proven to be the major influencing factor for the protocol’s performance.
The larger that interval is set, the more the overall delivery rates deteriorate.
It has been observed that with an increasing beacon interval the motion
prediction error increases, too. This directly results in longer average route
lengths with the chance of forwarding packets with negative progress growing
larger accordingly.

Finally, after examining the drop distance histograms, it became ap-
parent that the determination of the global loss probability by means of
simulating real world scenarios with ns-2 is insufficient. Since a packet that
is dropped early on its traversal through the network can’t contribute to
the random experiment of forwarding network traffic any longer, the results
become increasingly unreliable if much of the overall amount of data packets
is lost prematurely. A future approach to tackle this problem can be con-
ceived by changing the implementation of the random experiment. Instead
of simulating traffic scenarios as done in this work, one could, for instance,
only count the number of drops without actually discarding the dropped
packets. Thus, each data packet would invariably reach its destination yet
will be possibly counted once or more often as dropped.

A more natural way of determining the loss probability could also be
done by not setting up any communication partners in ns-2 at all. By ex-
tending the hwgui tool appropriately, it is conceivable to randomly choose
any two neighboring nodes and check the probability of a successful packet

29



forwarding process at a particular time instance between them. This could
then be repeated and aggregated over a large number of randomly chosen
neighbors. Since the forwarding processes are independent from each other
and do not depend on the chosen communication distance either, this pro-
ceeding is admissible.

30



References

[1] Oskar Anderson, Werner Popp, and Manfred Schaffranek. Schätzen und
Testen. Springer, Berlin, 1997.

[2] Holger Füßler, Martin Mauve, Hannes Hartenstein, Michael Käsemann,
and Dieter Vollmer. A Comparison of Routing Strategies for Vehicular
Ad Hoc Networks. Technical Report TR-02-003, Department of Com-
puter Science, University of Mannheim, July 2002.

[3] Brad N. Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Rout-
ing for Wireless Networks. In Proceedings of the sixth annual ACM/IEEE
International Conference on Mobile computing and networking (Mobi-
Com ’00), pages 243–254, Boston, Massachusetts, August 2000.

[4] Roland Krüger, Holger Füßler, Marc Torrent-Moreno, Hannes Harten-
stein, and Wolfgang Effelsberg. Statistical Analysis of the FleetNet High-
way Movement Patterns. Technical Report TR-2005-004, Department of
Mathematics and Computer Science, University of Mannheim, 2005.

[5] Martin Mauve, Hannes Hartenstein, Holger Füßler, Jörg Widmer, and
Wolfgang Effelsberg. Positionsbasiertes Routing für die Kommunikation
zwischen Fahrzeugen. it + ti, 44(5):278–286, October 2002.

[6] Martin Mauve, Jörg Widmer, and Hannes Hartenstein. A Survey on
Position-Based Routing in Mobile Ad-Hoc Networks. IEEE Network,
15(6):30–39, November/December 2001.

[7] The ns-2 network simulator. http://www.isi.edu/nsnam/ns/.

[8] HWGUI project page.
http://www.informatik.uni-mannheim.de/lib/projects/hwgui/.

31


	Introduction
	Position-Based Routing
	Mobile ad-hoc networks
	Routing strategies
	Beaconing
	Beacon packets
	Implicit beaconing

	Location services
	Greedy forwarding
	Recovery strategies
	Lost link callback


	Detailed problem description
	Implementation
	The ns-2 network simulator
	Scenario generation with the hwgui tool
	Origin of the movement patterns
	Creation of bidirectional movement scenarios for ns-2
	Communication patterns

	Adjustments made to the network code
	Evaluation scripts
	Drop distance histograms
	Loss probability graph
	Graph of estimated PDR


	Simulations and results
	Simulation setup
	Observations
	Packet duplicates
	Routing loops
	Effects of the location service

	Simulation results
	Enabling implicit beaconing and lost link callback
	Disabling implicit beaconing
	Disabling lost link callback
	Disabling both implicit beaconing and lost link callback


	Conclusions and future work

